分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021版新课标名师导学高考第一轮总复习考点集训(三十八) 第38讲 二元一次不等式(组)与简单的线性规划问题 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:624762
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:7
  • 大小:106.18KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021版新课标名师导学高考第一轮总复习考点集训三十八第38讲二元一次不等式组与简单的线性规划问题 WORD版含解析 2021 新课 名师 高考 第一轮 复习 考点 集训 三十八 38 二元
    资源描述:

    1、考点集训(三十八)第38讲二元一次不等式(组)与简单的线性规划问题对应学生用书p241A组题1下列二元一次不等式组可表示图中阴影部分平面区域的是()A. B.C. D.解析 将原点坐标(0,0)代入2xy2,得20,于是2xy20所表示的平面区域在直线2xy20的右下方,结合所给图形可知C正确答案 C2若x,y满足|x|1y,且y1,则3xy的最大值为()A7 B1 C5 D7解析 由题意作出可行域如图阴影部分所示设z3xy,yz3x,当直线l0:yz3x经过点时,z取最大值5.故选C.答案 C3若x,y满足约束条件则zx2y的取值范围是()A0,6 B0,4 C6,) D4,)解析 如图,可

    2、行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D.答案 D4变量x,y满足约束条件若z2xy的最大值为2,则实数m等于()A2 B1 C1 D2解析 对于选项A,当m2时,可行域如图(1),直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故A不正确;对于选项B,当m1时,mxy0等同于xy0,可行域如图(2),直线y2xz的截距可以无限小,z不存在最大值,不符合题意,故B不正确;对于选项C,当m1时,可行域如图(3),当直线y2xz过点A(2,2)时截距最小,z最大为2,满足题意,故C正确;对于选项D,当m2时,可行域如图(4),直线y2xz与直线OB平行,截距最

    3、小值为0,z最大为0,不符合题意,故D不正确故选C.答案 C5若x,y满足约束条件目标函数zax2y仅在点(1,0)处取得最小值,则实数a的取值范围是()A(4,2) B(4,1)C(,4)(2,) D(,4)(1,)解析 如图,zax2y,yx仅在点(1,0)处在y轴上的截距最小,12,4a0,求得makAB3,解得a3,则实数a的取值范围是(,3答案 (,36已知点P(x,y)的坐标满足约束条件则的取值范围是_解析 法一:作出不等式组表示的平面区域,如图中阴影部分所示,其中B(1,1),C(0,1)设A(1,1),向量,的夹角为,xy,|,cos ,由图可知AOCAOB,即,1cos ,即1,1.法二:作出不等式组表示的平面区域,如图中阴影部分所示,其中B(1,1),C(0,1),设POx,则cos ,sin .,cos sin sin.,sin .(,1答案 (,1

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021版新课标名师导学高考第一轮总复习考点集训(三十八) 第38讲 二元一次不等式(组)与简单的线性规划问题 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-624762.html
    相关资源 更多
  • 专题07 冠词(原卷版).docx专题07 冠词(原卷版).docx
  • 专题07 写作(原卷版).docx专题07 写作(原卷版).docx
  • 专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx专题07 写作 -2023-2024学年四年级英语上册期中专项复习(人教PEP版).docx
  • 专题07 全面依法治国(讲义)(解析版).docx专题07 全面依法治国(讲义)(解析版).docx
  • 专题07 全面依法治国(讲义)(原卷版).docx专题07 全面依法治国(讲义)(原卷版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(解析版).docx
  • 专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx专题07 全等三角形旋转、一线三等角模型(重点突围)(原卷版).docx
  • 专题07 全等三角形中的倍长中线模型(解析版).docx专题07 全等三角形中的倍长中线模型(解析版).docx
  • 专题07 全等三角形中的倍长中线模型(原卷版).docx专题07 全等三角形中的倍长中线模型(原卷版).docx
  • 专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx专题07 倍半角模型(知识精讲)-冲刺2021年中考几何专项复习.docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx专题07 倍半角模型巩固练习(提优)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题07 倍半角模型巩固练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题07 伴性遗传与人类遗传病(解析版).docx专题07 伴性遗传与人类遗传病(解析版).docx
  • 专题07 伴性遗传与人类遗传病(原卷版).docx专题07 伴性遗传与人类遗传病(原卷版).docx
  • 专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx专题07 传送带模型-2022-2023学年高中物理同步练习分类专题教案(人教版2019必修第一册).docx
  • 专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx专题07 仿用、变化句式(导学案)-2023年新高考一轮复习讲堂之语言文字运用.docx
  • 专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx专题07 任务型阅读(回答问题)12篇(名校模拟 地区真题)-冲刺2023年中考英语必考题型终极预测(重庆专用).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(解析版).docx
  • 专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx专题07 代词和限定词【知识梳理】-【口袋书】2024年中考英语一轮复习知识清单(全国通用)(原卷版).docx
  • 专题07 介词-2023年高考英语冲刺复习考点通关大全.docx专题07 介词-2023年高考英语冲刺复习考点通关大全.docx
  • 专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx专题07 人口专题(讲义)-【高频考点解密】2023年高考地理二轮专题复习课件 讲义 分层训练(浙江专用)(原卷版).docx
  • 专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx专题07 人口专题(分层训练)-【高频考点解密】2023年高考地理二轮复习课件 讲义 分层训练(浙江专用)(解析版).docx
  • 专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx专题07 二项式定理【艺体生专供选择填空抢分专题】备战2024年高考高频考点题型精讲 精练(新高考通用)-解析版.docx
  • 专题07 二次方程(解析版).docx专题07 二次方程(解析版).docx
  • 专题07 二次方程(原卷版).docx专题07 二次方程(原卷版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(解析版).docx
  • 专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx专题07 二次函数的综合(中考数学特色专题训练卷)(原卷版).docx
  • 专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx专题07 二次函数与直角三角形有关问题(专项训练)(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1