8.3 三元一次方程组【七大题型】(人教版)(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 七大题型 8.3 三元一次方程组【七大题型】人教版学生版 三元 一次 方程组 七大 题型 人教版 学生
- 资源描述:
-
1、专题8.3 三元一次方程组【七大题型】【人教版】【题型1 三元一次方程(组)的解】1【题型2 用消元法解三元一次方程组】2【题型3 用换元法解三元一次方程组】2【题型4 构建三元一次方程组解题】3【题型5 运用整体思想求值】3【题型6 三元一次方程组中的数字问题】4【题型7 三元一次方程组的应用】5【知识点1 三元一次方程组及解法】1三元一次方程组中的方程不一定都是三元一次方程组,并且有时需对方程化简后再根据三元一次方程组的的定义进行判断2解三元一次方程组的基本思想是消元,通过代入或加减消,使三元化为二元或一元,转化为我们已经熟悉的问题3当三元一次方程组中出现比例式时,可采用换元法解方程组【题
2、型1 三元一次方程(组)的解】【例1】(2022河南南阳七年级期中)我们探究得方程x+y=2的正整数解只有1组,方程x+y=3的正整数解只有2组,方程x+y=4的正整数解只有3组,那么方程x+y+z=9的正整数解的组数是()A27B28C29D30【变式1-1】(2022浙江杭州市实验外国语学校七年级期中)已知x=1y=2z=3是方程组ax+by=2by+cz=3cx+az=7的解,则a+b+c的值为()A3B2C1D0【变式1-2】(2022全国八年级专题练习)方程x+2y+3z=14xyz的正整数解是_【变式1-3】(2022全国九年级专题练习)三元一次方程xyz1999的非负整数解的个数
3、有()A20001999个B19992000个C2001000个D2001999个【题型2 用消元法解三元一次方程组】【例2】(2022贵州铜仁市第十一中学七年级阶段练习)方程组2x+3y-z=183x-2y+z=8x+2y+z=24的解_【变式2-1】(2022全国八年级单元测试)已知2x+3y=z3x+4y=2z+6且xy3,则z的值为( )A9B3C12D不确定【变式2-2】(2022江苏七年级专题练习)解下列三元一次方程组:(1)y=2x-75x+3y+2z=23x-4z=4;(2)4x+9y=123y-2z=17x+5z=194【变式2-3】(2022湖北武汉七年级期中)九章算术是我
4、国古代著名的数学专著,其“方程”章中给出了“遍乘直除”的算法解方程组比如对于方程组3x+2y+z=392x+3y+z=34x+2y+3z=26,将其中数字排成长方形形式,然后执行如下步骤(如图);第一步,将第二行的数乘以3,然后不断地减第一行,直到第二行第一个数变为0;第二步,对第三行做同样的操作,其余步骤都类似其本质就是在消元那么其中的a,b的值分别是()A24,4B17,4C24,0D17,0【题型3 用换元法解三元一次方程组】【例3】(2022全国七年级课时练习)方程组x:y:z=1:2:3x+y+z=36的解是x=y=z=.【变式3-1】(2022全国七年级单元测试)已知方程组x2=y
5、3=z45x-2y+z=16若设x2=y3=z4=k ,则k= _【变式3-2】(2022内蒙古乌海市第二中学七年级期中)探索创新完成下面的探索过程:给定方程组1x+1y=11y+1z=21z+1x=5,如果令1x=A,1y=B,1z=C,则方程组变成_;解出这个新方程组(要求写出解新方程组的过程),得出A,B,C的值,从而得到:x= _;y=_;z= _【变式3-3】(2022全国八年级课时练习)若xyz0且2y+zx=2x+yz=2z+xy=k,则k_【题型4 构建三元一次方程组解题】【例4】(2022四川省荣县中学校七年级期中)对于实数x,y定义新运算:xy=ax+by+c,其中a,b,
6、c均为常数,且已知35=15,47=28,则23的值为()A2B4C6D8【变式4-1】(2022全国单元测试)已知(x+y-3)2+|y+z-5|+(z+x-4)4=0,则x+y+z的值是_【变式4-2】(2022全国七年级专题练习)在式子y=ax2+bx+c中,当x=0时,y=1;当x=1时,y=0;当x=-1时,y=4,则a,b,c的值分别为_【变式4-3】(2022浙江七年级期末)对于实数x,y定义新运算xy=ax+by+cxy其中a,b,c为常数,若12=3,23=4,且有一个非零常数d,使得对于任意的x,恒有xd=x,则d的值是_【题型5 运用整体思想求值】【例5】(2022湖北十
7、堰市北京路中学七年级期中)已知实数x,y满足3x-y=5,2x+3y=7,求x-4y和7x+5y的值本题常规思路是先将,两式联立组成方程组,解得x,y的值,再代入欲求值的整式得到答案,常规思路运算量比较大其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由-可得x-4y=-2,由+2可得7x+5y=19这样的解题思想就是通常所说的“整体思想”解决问题:(1)已知二元一次方程组2x+y=7x+2y=8,则x-y=_,x+y=_(2)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算已知3*5=15,4*
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
