分享
分享赚钱 收藏 举报 版权申诉 / 15

类型2022-2023学年度人教版八年级数学上册第十四章整式的乘法与因式分解定向测试试卷.docx

  • 上传人:a****
  • 文档编号:642137
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:15
  • 大小:165.90KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十四 整式 乘法 因式分解 定向 测试 试卷
    资源描述:

    1、八年级数学上册第十四章整式的乘法与因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a)(x+b)=x2-7x+12,则a,b的值

    2、可能分别是()A,B,4C3,D3,42、若,则、的值为()A,B,C,D,3、下列各多项式中,能运用公式法分解因式的有()A4个B5个C6个D7个4、下列运算正确的是()Aa2a3a6Ba2a2a4C(ab)2a2b2D(a)3a2a55、已知xy3,xy1,则x2+y2()A5B7C9D116、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da247、设a是绝对值最小的有理数,b是最大的负整数,c是倒数等于自身的有理数,则的值为()A2B0C0或2D0或-28、已知(x-m)(x+n)=x2-3x-4,则m-n的值为()A1B-3C-2D39、已知5x=3,5y=2,则52x3

    3、y=()AB1CD10、将多项式xx3因式分解正确的是()Ax(x21)Bx(1x2)Cx(x+1)(x1)Dx(1+x)(1x)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,则_,_2、化简:_.3、计算:=_4、定义为二阶行列式,规定它的运算法则为=adbc.则二阶行列式的值为_.5、若,则代数式的值等于_三、解答题(5小题,每小题10分,共计50分)1、已知有理数m,n满足(mn)29,(mn)21.求下列各式的值(1)mn;(2)m2n2mn.2、3、分解因式(1)2x2y24y3z;(2)4x216y24、化简:(x4)3+(x3)42x4x85、分解

    4、因式:(1)(2)-参考答案-一、单选题1、A【解析】【分析】根据题意可得规律为,再逐一判断即可【详解】解:根据题意得,a,b的值只要满足即可,A-3+(-4)=-7,-3(-4)=12,符合题意;B-3+4=1,-34=-12,不符合题意;C3+(-4)=-1,3(-4)=-12,不符合题意;D3+4=7,34=12,不符合题意故选:A【考点】本题考查了多项式乘多项式,解题的关键是根据题意找出规律2、D【解析】【分析】根据单项式的乘法法则,乘号前面的数相乘,乘号后面的数相乘,再转化成科学记数法表示数,即可求出M,a的值【详解】解:=M=8,a=10故选D【考点】本题考查了单项式的乘法,同底数

    5、幂的乘法,科学记数法熟练掌握各个运算法则和科学记数法表示数的计算方法是解题的关键3、B【解析】【分析】利用完全平方公式及平方差公式的特征判断即可【详解】解:(1)可用平方差公式分解为;(2)不能用平方差公式分解;(3)可用平方差公式分解为;(4)可用平方差公式分解为4am;(5)可用平方差公式分解为;(6)可用完全平方公式分解为 ;(7)不能用完全平方公式分解;能运用公式法分解因式的有5个,故选B【考点】此题考查了因式分解运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键4、D【解析】【分析】根据完全平方公式、同底数幂的乘法,即可解答【详解】A. 根据同底数幂的乘法计算得:,选项错误;

    6、B. 根据合并同类项计算得:,选项错误;C. 根据完全平方公式计算得:,选项错误;D. 根据同底数幂的乘法计算得:,选项正确;故选:D【考点】本题考查了完全平方公式、同底数幂的乘法,解决本题的关键是熟记完全平方公式5、D【解析】【分析】由完全平方公式:(xy)2x2+y22xy,然后把xy,xy的值整体代入即可求得答案【详解】解:xy3,xy1,(xy)2x2+y22xy,9x2+y22,x2+y211,故选:D【考点】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式是解答此题的关键6、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)

    7、=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.7、C【解析】【分析】由a是绝对值最小的有理数,b为最大的负整数,c是倒数等于自身的有理数,可分别得出a、b、c的值,代入计算可得结果【详解】解:a是绝对值最小的有理数,b是最大的负整数,c是倒数等于自身的有理数,可得a=0,b=-1,c=1或c=-1,所以a-b+c=0-(-1)+1=0+1+1=2,或者a-b+c=0-(-1)-1=0+1+-1=0,综上所述,a-b+c的值是0或2故选C【考点】本题主要考查有理数的概念的理解及代数式求值,能正确判断有关有理数的概念是解题的关键8、D【解析】【分析】把原式

    8、的左边利用多项式乘多项式展开,合并后与右边对照 即可得到m-n的值【详解】(x-m)(x+n)=x2+nx-mx-mn=x2+(n-m)x-mn,(x-m)(x+n)=x2-3x-4,n-m=-3,则m-n=3,故选D【考点】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键9、D【解析】【详解】分析:首先根据幂的乘方的运算方法,求出52x、53y的值;然后根据同底数幂的除法的运算方法,求出52x3y的值为多少即可详解:5x=3,5y=2,52x=32=9,53y=23=8,52x3y=故选D点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要

    9、熟练掌握,解答此题的关键是要明确:底数a0,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么10、D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案【详解】xx3=x(1x2)=x(1x)(1+x)故选D【考点】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键二、填空题1、 12 【解析】【分析】利用完全平方公式和平方差公式计算求值即可;【详解】解:由题意得:,故答案为:12,;【考点】本题考查了代数式求值,实数的混合运算,掌握乘法公式是解题关键2

    10、、#【解析】【分析】原式提取公因式,计算即可得到结果【详解】解:原式=(a+1)1+a+a(a+1)+a(a+1)2+a(a+1)2021=(a+1)21+a+a(a+1)+a(a+1)2+a(a+1)2020=(a+1)31+a+a(a+1)+a(a+1)2+a(a+1)2019=(a+1)2023故答案为:(a+1)2023【考点】本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键3、#【解析】【分析】原式利用平方差公式化简即可【详解】故答案为:【考点】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键4、1【解析】【详解】由题意可得:=.故答案为1.5、9【解析】

    11、【分析】先计算x-y的值,再将所求代数式利用平方差公式分解前两项后,将x-y的值代入化简计算,再代入计算即可求解【详解】解:,=9故答案为:9【考点】本题主要考查因式分解的应用,通过平方差公式分解因式后整体代入是解题的关键三、解答题1、(1)mn2;(2)3【解析】【详解】试题分析:(1)、根据mn=得出答案;(2)、根据得出答案试题解析:(1)、原式=(2)、原式=2、【解析】【分析】先提公因式3mn,再利用十字相乘法分解因式即可【详解】解:原式【考点】本题考查因式分解,熟练掌握提公因式法和十字相乘法分解因式是解答的关键3、(1)2y2(x22yz);(2)4(x+2y)(x2y)【解析】【

    12、分析】(1)直接提取公因式2y2,即可分解因式;(2)首先提取公因式4,再利用平方差公式分解因式即可【详解】解:(1)2x2y24y3z2y2(x22yz);(2)4x216y24(x24y2)4(x+2y)(x2y)【考点】本题主要考查因式分解,掌握提公因式法、公式法分解因式是解题的关键4、0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案【详解】解原式=x12+x12-2x12=0【考点】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键5、(1);(2)【解析】【分析】(1)提取公因式-2a后,对剩下的因式再运用十字相乘法进行因式分解即可;(2)原式利用平方差公式分解后,合并同类项即可得到答案.【详解】(1) ;(2);【考点】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十四章整式的乘法与因式分解定向测试试卷.docx
    链接地址:https://www.ketangku.com/wenku/file-642137.html
    相关资源 更多
  • 【执业药师考试】执业药师药事管理与法规-463.pdf【执业药师考试】执业药师药事管理与法规-463.pdf
  • 【执业药师考试】执业药师药事管理与法规-462.pdf【执业药师考试】执业药师药事管理与法规-462.pdf
  • 【执业药师考试】执业药师药事管理与法规-460.pdf【执业药师考试】执业药师药事管理与法规-460.pdf
  • 【执业药师考试】执业药师药事管理与法规-46-3.pdf【执业药师考试】执业药师药事管理与法规-46-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-46-1.pdf【执业药师考试】执业药师药事管理与法规-46-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-456.pdf【执业药师考试】执业药师药事管理与法规-456.pdf
  • 【执业药师考试】执业药师药事管理与法规-453.pdf【执业药师考试】执业药师药事管理与法规-453.pdf
  • 【执业药师考试】执业药师药事管理与法规-452.pdf【执业药师考试】执业药师药事管理与法规-452.pdf
  • 【执业药师考试】执业药师药事管理与法规-451.pdf【执业药师考试】执业药师药事管理与法规-451.pdf
  • 【执业药师考试】执业药师药事管理与法规-450.pdf【执业药师考试】执业药师药事管理与法规-450.pdf
  • 【执业药师考试】执业药师药事管理与法规-44-3.pdf【执业药师考试】执业药师药事管理与法规-44-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-44-1.pdf【执业药师考试】执业药师药事管理与法规-44-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-43.pdf【执业药师考试】执业药师药事管理与法规-43.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-3.pdf【执业药师考试】执业药师药事管理与法规-43-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-2.pdf【执业药师考试】执业药师药事管理与法规-43-2.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-1.pdf【执业药师考试】执业药师药事管理与法规-43-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-42.pdf【执业药师考试】执业药师药事管理与法规-42.pdf
  • 【执业药师考试】执业药师药事管理与法规-42-1.pdf【执业药师考试】执业药师药事管理与法规-42-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-41.pdf【执业药师考试】执业药师药事管理与法规-41.pdf
  • 【执业药师考试】执业药师药事管理与法规-41-3.pdf【执业药师考试】执业药师药事管理与法规-41-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-41-1.pdf【执业药师考试】执业药师药事管理与法规-41-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-40.pdf【执业药师考试】执业药师药事管理与法规-40.pdf
  • 【执业药师考试】执业药师药事管理与法规-40-2.pdf【执业药师考试】执业药师药事管理与法规-40-2.pdf
  • 【执业药师考试】执业药师药事管理与法规-40-1.pdf【执业药师考试】执业药师药事管理与法规-40-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-4-3.pdf【执业药师考试】执业药师药事管理与法规-4-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-4-1.pdf【执业药师考试】执业药师药事管理与法规-4-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-39.pdf【执业药师考试】执业药师药事管理与法规-39.pdf
  • 【执业药师考试】执业药师药事管理与法规-39-2.pdf【执业药师考试】执业药师药事管理与法规-39-2.pdf
  • 【学霸笔记】6.1 加法交换律和结合律及其应用—2021-2022学年四年级下册数学同步重难点讲练苏教版(含解析).docx【学霸笔记】6.1 加法交换律和结合律及其应用—2021-2022学年四年级下册数学同步重难点讲练苏教版(含解析).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1