分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年期末强化人教版九年级数学上册期末综合练习试题 (A)卷(含答案解析).docx

  • 上传人:a****
  • 文档编号:646307
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:824.63KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年期末强化人教版九年级数学上册期末综合练习试题 A卷含答案解析 2022 2023 学年 期末 强化 人教版 九年级 数学 上册 综合 练习 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m

    2、0两根,则m的值等于()A12B16C12或16D12或162、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD3、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D44、若m,n是方程x2x2 0220的两个根,则代数式(m22m2 022)(n22n2 022)的值为()A2 023B2 022C2 021D2 0205、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的

    3、面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)3000二、多选题(5小题,每小题4分,共计20分)1、如图,O是正ABC内一点,OA3,OB4,OC5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论中正确的结论是( )ABOA可以由BOC绕点B逆时针旋转60得到B点O与O的距离为4CAOB150DS四边形AOBO6+3ESAOC+SAOB6+ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图所示,二次函数的图象的一部分,图像与x

    4、轴交于点下列结论中正确的是()A抛物线与x轴的另一个交点坐标是BC若抛物线经过点,则关于x的一元二次方程的两根分别为,5D将抛物线向左平移3个单位,则新抛物线的表达式为3、如图,AB为的直径,BC交于点D,AC交于点E,下列结论正确的是()ABCD劣弧是劣弧的2倍4、观察如图推理过程,错误的是()A因为的度数为,所以B因为,所以C因为垂直平分,所以D因为,所以5、已知:如图,ABC中,A60,BC为定长,以BC为直径的O分别交AB、AC于点D、E连接DE、OE下列结论中正确的结论是()ABC2DEBD点到OE的距离不变CBD+CE2DEDAE为外接圆的切线第卷(非选择题 65分)三、填空题(5

    5、小题,每小题5分,共计25分)1、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_ 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_3、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直

    6、线有三个不同的公共点,则m的值为_4、若函数图像与x轴的两个交点坐标为和,则_5、已知二次函数yx2bxc的顶点在x轴上,点A(m1,n)和点B(m3,n)均在二次函数图象上,求n的值为_四、解答题(5小题,每小题8分,共计40分)1、一个二次函数y=(k1)求k值2、如图,AB是的直径,弦于点E若,求弦CD3、安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:(1)求与之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降

    7、价多少元?4、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值5、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成 线 封 密 内 号学级年名姓 线 封 密 外 为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种

    8、,例图除外)-参考答案-一、单选题1、D【解析】【分析】由ABC为等腰三角形,BC6,且AB,AC为方程x28x+m0两根,可得两种情况:BC6AB,把6代入方程得3648+m0ABAC,此时方程的判别式为0,分别求解即可【详解】解:ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则BC6AB,把6代入方程得3648+m0,m12;ABAC,此时方程的判别式为0,644m0,m16故m的值等于12或16故选:D【考点】本题考查了一元二次方程的判别式和等腰三角形的性质,熟练掌握知识点是解题的关键2、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的

    9、顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键3、C【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接

    10、圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键4、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)(-2022+n+2022)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已

    11、知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键5、B【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元

    12、二次方程二、多选题1、ABCE【解析】【分析】证明可判断 证明是等边三角形,可判断 利用是等边三角形,证明可判断 由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形, BOA可以由BOC绕点B逆时针旋转60得到,故符合题意;如图,连接,由 是等边三角形,则点O与O的距离为4,故符合题意; 故符合题意;如图,过作于 是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 S四边形AOBO 故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形

    13、,是边长为的直角三角形,同理可得: 故符合题意;故选:【考点】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.2、ABD【解析】【分析】结合图象,根据二次函数的性质进行判断即可求解【详解】抛物线开口向下,a0,将(-1,0)代入抛物线方程,可得:4a+k=0,4a+k=0,k=-4a,k+a=-3a,a0,k+a=-3a0,即B选项正确;将k=-4a代入抛物线方程,可得:抛物线方程为:,当y=0时,方程的根为-1和3,抛物线与x轴的另一个交点为(3,0),即A项正确;将点(-3,m)代入到抛物线方程,

    14、可得m=12a,结合k=-4a,方程,化简为:,a0,即,显然方程无实数解,故C项说法错误; 线 封 密 内 号学级年名姓 线 封 密 外 向左平移3个单位,依据左加右减原则,可得新抛物线为:,即D说法正确,故选:ABD【考点】本题考查了抛物线的性质与图象的知识,解答本题时需注重运用数形结合的思想3、ABD【解析】【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径所对圆周角是直角等知识即可解答【详解】如图,连接,,是的直径,又中,点D是的中点,即,故选项正确;由选项可知是的平分线,由圆周角定理知,故选项正确;是的直径,即,故选项错误;,在中,劣弧是劣弧的2倍,故选项正确综上所述,正确的

    15、结论是:故选:【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了圆周角定理,等边对等角,等腰直角三角形的判定和性质,直径所对圆周角是直角等知识,解题关键是求出相应角的度数4、ABC【解析】【分析】A.根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.根据“垂径定理”及弦的定义可得.D.根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A. 的度数是 ,故选项A错误.B.由定理“同圆

    16、中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。 没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断 ,故选项C错误.D. 即 由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练掌握圆的相关定理是解题的关键.5、AB【解析】【分析】连接OD,可证明ODE是等边三角形,所以A,B正确;通过举反例:当重合,时,可得:可得C不一

    17、定成立,根据切线的定义,可得D不正确,从而可得答案【详解】解:连接OD ,A=60 B+C=120, 的度数为 的度数为 的度数为DOE=60,又OD=OE ,ODE是等边三角形, 即 所以A正确,符合题意;则D到OE的长度是等边ODE的高,而等边的边长等于圆的半径,则高一定是一个定值,因而B正确,符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 如图:当重合,时,则为的切线,同理可得: 此时 则 为的直径, 此时 所以C不符合题意;与的外接圆有两个交点,不是外接圆的切线,所以D不符合题意;故选:AB【考点】本题考查的是圆的基本性质,圆弧的度数与其所对的圆周角的度数之间的关系,切线的概

    18、念的理解,等边三角形的判定与性质,灵活运用以上知识解题是解题的关键.三、填空题1、x(100-4x)=400【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.2、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出

    19、点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长【详解】解:当y0时,x2+x+20,解得:x12,x24,点A的坐标为(2,0);当x0时,yx2+x+22,点C的坐标为(0,2);当y2时,x2+x+22,解得:x10,x22,点D的坐标为(2,2)设直线AD的解析式为ykx+b(k0),将A(2,0),D(2,2)代入ykx+b,得: 线 封 密 内 号学级年名姓 线 封 密 外 解得:直线AD的解析式为yx+1当x0时,yx+11,点E的坐标为(0,1)当y1时,x2+x+21,解得:x11,x21+,点P的坐标为(1,1),点Q的坐标为(1+,

    20、1),PQ1+(1)2故答案为:2【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点P,Q的坐标是解题的关键3、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,

    21、将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过 线 封 密 内 号学级年名姓 线 封 密 外 ,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键4、-2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交

    22、点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键5、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b2(m+1),c(m+1)2,即可得出yx22(m+1)x+(m+1)2,把A的坐标代入即可求得n的值【详解】解:点A(m1,n)和点B(m+3,n)均在二次函数yx2+bx+c图象上,b2(m+1),二次函数yx2+bx+c的顶点在x轴上,b24c0,2(m+1)24c0,c(m+1)2,yx22(m+1)x+(m+1)2,把A的坐标代入得,n(m1)22(m

    23、+1)(m1)+(m+1)24,故答案为:4【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键四、解答题1、k=2 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件2、【解析】【分析】连接OC,如图,根据垂径定理得到CE=DE,然后

    24、利用勾股定理计算出CE,从而得到CD的长【详解】解:连接OC,如图,AB为直径,弦CDAB,CE=DE,AB=8,OA=OC=4,OE=OA-AE=4-1=3,在RtOCE中,CE=,CD=2CE=【考点】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了勾股定理3、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元【解析】【分析】(1)根据图象可得:当,当,;再用待定系数法求解即可;(2)根据这种干果每千克的利润销售量=2090列出方程,解方程即可【详解】解:(1)设一次函数解析式为:,根据图象可知:当,;当,;,解得:,与之间的函数关系式为;(2

    25、)由题意得:,整理得:,解得:,让顾客得到更大的实惠,.答:商贸公司要想获利2090元,这种干果每千克应降价9元【考点】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 4、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中,

    26、 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.5、见解析.【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据轴对称图形和旋转对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【考点】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年期末强化人教版九年级数学上册期末综合练习试题 (A)卷(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-646307.html
    相关资源 更多
  • 【执业药师考试】执业药师药事管理与法规-463.pdf【执业药师考试】执业药师药事管理与法规-463.pdf
  • 【执业药师考试】执业药师药事管理与法规-462.pdf【执业药师考试】执业药师药事管理与法规-462.pdf
  • 【执业药师考试】执业药师药事管理与法规-460.pdf【执业药师考试】执业药师药事管理与法规-460.pdf
  • 【执业药师考试】执业药师药事管理与法规-46-3.pdf【执业药师考试】执业药师药事管理与法规-46-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-46-1.pdf【执业药师考试】执业药师药事管理与法规-46-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-456.pdf【执业药师考试】执业药师药事管理与法规-456.pdf
  • 【执业药师考试】执业药师药事管理与法规-453.pdf【执业药师考试】执业药师药事管理与法规-453.pdf
  • 【执业药师考试】执业药师药事管理与法规-452.pdf【执业药师考试】执业药师药事管理与法规-452.pdf
  • 【执业药师考试】执业药师药事管理与法规-451.pdf【执业药师考试】执业药师药事管理与法规-451.pdf
  • 【执业药师考试】执业药师药事管理与法规-450.pdf【执业药师考试】执业药师药事管理与法规-450.pdf
  • 【执业药师考试】执业药师药事管理与法规-44-3.pdf【执业药师考试】执业药师药事管理与法规-44-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-44-1.pdf【执业药师考试】执业药师药事管理与法规-44-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-43.pdf【执业药师考试】执业药师药事管理与法规-43.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-3.pdf【执业药师考试】执业药师药事管理与法规-43-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-2.pdf【执业药师考试】执业药师药事管理与法规-43-2.pdf
  • 【执业药师考试】执业药师药事管理与法规-43-1.pdf【执业药师考试】执业药师药事管理与法规-43-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-42.pdf【执业药师考试】执业药师药事管理与法规-42.pdf
  • 【执业药师考试】执业药师药事管理与法规-42-1.pdf【执业药师考试】执业药师药事管理与法规-42-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-41.pdf【执业药师考试】执业药师药事管理与法规-41.pdf
  • 【执业药师考试】执业药师药事管理与法规-41-3.pdf【执业药师考试】执业药师药事管理与法规-41-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-41-1.pdf【执业药师考试】执业药师药事管理与法规-41-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-40.pdf【执业药师考试】执业药师药事管理与法规-40.pdf
  • 【执业药师考试】执业药师药事管理与法规-40-2.pdf【执业药师考试】执业药师药事管理与法规-40-2.pdf
  • 【执业药师考试】执业药师药事管理与法规-40-1.pdf【执业药师考试】执业药师药事管理与法规-40-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-4-3.pdf【执业药师考试】执业药师药事管理与法规-4-3.pdf
  • 【执业药师考试】执业药师药事管理与法规-4-1.pdf【执业药师考试】执业药师药事管理与法规-4-1.pdf
  • 【执业药师考试】执业药师药事管理与法规-39.pdf【执业药师考试】执业药师药事管理与法规-39.pdf
  • 【执业药师考试】执业药师药事管理与法规-39-2.pdf【执业药师考试】执业药师药事管理与法规-39-2.pdf
  • 【学霸笔记】6.1 加法交换律和结合律及其应用—2021-2022学年四年级下册数学同步重难点讲练苏教版(含解析).docx【学霸笔记】6.1 加法交换律和结合律及其应用—2021-2022学年四年级下册数学同步重难点讲练苏教版(含解析).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1