分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2022高三数学(理科)(全国版)一轮复习试题:第8章第2讲 空间点、线、面的位置关系 2 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:742686
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:7
  • 大小:232.40KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022高三数学理科全国版一轮复习试题:第8章第2讲 空间点、线、面的位置关系 WORD版含解析 2022 数学 理科 全国 一轮 复习 试题 空间 位置 关系 WORD 解析
    资源描述:

    1、第八章立体几何第二讲空间点、直线、平面之间的位置关系1.2021陕西省部分学校摸底检测已知a,b,c是三条不同的直线,是一个平面,给出下列命题:若ab,bc,则ac;若ab,bc,则ac;若ab,b,则a;若a,b,则ab.其中为真命题的是()A.B.C.D.2.2020河南省名校4月模拟如图8-2-1,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,BC=2,点D为BC的中点,则异面直线AD与A1C所成的角为()图8-2-1A.2B.3C.4D.63.2020合肥三检点P是正方体ABCD-A1B1C1D1的侧面DCC1D1内的一个动点,若APD与BCP的面积之比等于2,则点P的轨迹

    2、是()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分4.数学文化题图8-2-2九章算术是我国的一部古代数学专著,书中记载了一种名为“刍甍”的五面体(如图8-2-2),其中四边形ABCD为矩形,EFAB,若AB=3EF,ADE和BCF都是正三角形,且AD=2EF,则异面直线AE与CF所成角的大小为.5.2020四川五校联考在棱长为6的正方体ABCD-A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,过A,E,F三点作该正方体的截面,则截面的周长为.6.2021贵阳市摸底测试图8-2-3如图8-2-3,正方体ABCD-A1B1C1D1的棱长为1,则下列四个命题:直线

    3、BC与平面ABC1D1所成的角等于4;点C到平面 ABC1D1的距离为22;异面直线D1C和BC1所成的角为4;三棱柱AA1D1-BB1C1的外接球的半径为32.其中正确的有()A.1个B.2个C.3个D.4个7.2021安徽省四校联考在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,P是上底面A1B1C1D1内一点,若AP平面BDEF,则线段AP长度的取值范围是()A.52,2B.324,52C.328,62D.62,28.2020陕西省部分学校摸底检测将正方形ABCD中的ACD沿对角线AC折起,使得平面ABC垂直于平面ACD,则异面直线AB与CD所成

    4、的角为()A.90B.60C.45D.309.2020广东七校第二次联考如图8-2-4,正方体ABCD-A1B1C1D1的棱长为1,P,Q分别是线段AD1和B1C上的动点,且满足AP=B1Q,则下列命题错误的是()A.存在P,Q运动到某一位置,使ABPQB.BPQ的面积为定值C.当点P不与点A重合时,直线PB1与AQ是异面直线D.无论P,Q运动到什么位置,均有BCPQ图8-2-4图8-2-510.2021黑龙江省六校联考如图8-2-5,已知正方体ABCD-A1B1C1D1的棱长为2,点M,N分别是棱BC,C1D1的中点,点P在平面A1B1C1D1内,点Q在线段A1N上,若PM=5,则PQ长度的

    5、最小值为.答 案第二讲空间点、直线、平面之间的位置关系1.B对于,因为ab,bc,所以ac(一条直线垂直于两条平行线中的一条,也垂直于另一条),故是真命题;对于,若ab,bc,则a,c可能平行、相交,也可能异面,故是假命题;对于,若ab,b,直线a与平面可能相交,也可能平行,故是假命题;对于,若b,则存在l,使得bl,又a,所以al,所以ab,故是真命题.故选B.2.B解法一取B1C1的中点D1,连接A1D1,D1C.易证A1D1AD,故A1D1,A1C所成的角就是AD,A1C所成的角.AB=AC=2,BC=2,D为BC的中点,ADBC,AD=AB2-BD2=(2)2-12=1,A1D1=AD

    6、=1,又A1C=AA12+AC2=(2)2+(2)2=2,D1C=D1C12+C1C2=12+(2)2=3,A1D12+D1C2=A1C2,A1D1C为直角三角形,cosD1A1C=12,即异面直线AD与A1C所成的角为3,故选B.图D 8-2-10解法二易知AB,AC,AA1两两垂直,以A为坐标原点,AB,AC,AA1所在直线分别为x轴、y轴、z轴建立如图D 8-2-10所示的空间直角坐标系,则A(0,0,0),A1(0,0,2),B(2,0,0),C(0,2,0),D(22,22,0),AD=(22,22,0),A1C=(0,2,-2),cos=ADA1C|AD|A1C|=12,即异面直线

    7、AD与A1C所成的角为3.故选B.3.A解法一因为ABCD-A1B1C1D1是正方体,所以AD平面DCC1D1,BC平面DCC1D1,又点P是正方体ABCD-A1B1C1D1的侧面DCC1D1内的一个动点,所以ADDP,BCCP,则SADPSBCP=PDPC=2,以D为原点,分别以DC,DD1为x,y轴建立平面直角坐标系,设P(x,y),正方体的棱长为1,则D(0,0),C(1,0),PDPC=2,即x2+y2(x-1)2+y2=2,化简整理得x2+y2-83x+43=0,因为点P是正方体ABCD-A1B1C1D1的侧面DCC1D1内的一个动点,所以点P的轨迹是圆x2+y2-83x+43=0在

    8、侧面DCC1D1内的部分,故选A.解法二因为ABCD-A1B1C1D1是正方体,所以AD平面DCC1D1,BC平面DCC1D1,又点P是正方体ABCD-A1B1C1D1的侧面DCC1D1内的一个动点,所以ADDP,BCCP,则SADPSBCP=PDPC=2,所以P点的轨迹为圆,又点P是正方体ABCD-A1B1C1D1的侧面DCC1D1内的一个动点,所以点P的轨迹是圆在侧面DCC1D1内的部分,故选A.4.2图D 8-2-11如图D 8-2-11,在平面ABFE中,过F作FGAE交AB于G,连接CG,则CFG或其补角为异面直线AE与CF所成的角.设EF=1,则AB=3,AD=2.因为EFAB,A

    9、EFG,所以四边形AEFG为平行四边形,所以FG=AE=AD=2,AG=1,BG=2,又ABBC,所以GC=BG2+BC2=22,又CF=BC=2,所以CG2=GF2+CF2,所以CFG=2,即异面直线AE与CF所成角的大小为2.5.图D 8-2-12613+32如图D 8-2-12,延长EF,A1B1,相交于点M,连接AM,交BB1于点H,延长FE,A1D1,相交于点N,连接AN,交DD1于点G,连接FH,EG,可得截面为五边形AHFEG.因为ABCD-A1B1C1D1是棱长为6的正方体,且E,F分别是棱C1D1,B1C1的中点,易得EF=32,AG=AH=213,EG=FH=13,截面的周

    10、长为AH+HF+EF+EG+AG=613+32.6.C正方体ABCD-A1B1C1D1的棱长为1,对于,直线BC与平面ABC1D1所成的角为CBC1=4,故正确;对于,点C到平面ABC1D1的距离为B1C长度的一半,即距离为22,故正确;对于,连接AC,因为BC1AD1,所以异面直线D1C和BC1所成的角即直线D1C和AD1所成的角,又ACD1是等边三角形,所以异面直线D1C和BC1所成的角为3,故错误;对于,三棱柱AA1D1-BB1C1的外接球就是正方体ABCD-A1B1C1D1的外接球,正方体ABCD-A1B1C1D1的外接球半径r=12+12+122=32,故正确.故选C.7.B图D 8

    11、-2-13如图D 8-2-13所示,分别取棱A1B1,A1D1的中点M,N,连接MN,B1D1,M,N,E,F均为所在棱的中点,MNB1D1,EFB1D1,MNEF,又MN平面BDEF,EF平面BDEF,MN平面BDEF.连接NF,AN,AM,则NFA1B1,NF=A1B1,又A1B1AB,A1B1=AB,NFAB,NF=AB,四边形ANFB为平行四边形,则ANFB,而AN平面BDEF,FB平面BDEF,AN平面BDEF.又ANNM=N,平面AMN平面BDEF.又P是上底面A1B1C1D1内一点,且AP平面BDEF,点P在线段MN上.在RtAA1M中,AM=AA12+A1M2=1+14=52,

    12、同理,在RtAA1N中,得AN=52,则AMN为等腰三角形.当P在MN的中点时,AP最小,为(52)2-(24)2=324,当P与M或N重合时,AP最大,为52.线段AP长度的取值范围是324,52.故选B.8.B图D 8-2-14解法一如图D 8-2-14,连接BD,取AC,BD,AD的中点分别为O,M,N,连接ON,OM,MN,则由三角形的中位线定理知ON=12CD,MN=12AB,所以所求的角为ONM或其补角.连接BO,OD,因为AB=BC,所以BOAC.因为平面ABC平面ACD,且平面ABC平面ACD=AC,BO平面ABC,所以BO平面ACD,所以BOOD.设原正方形ABCD的边长为2

    13、,则BO=OD=2,所以BD=2,所以OM=12BD=1,所以ON=MN=OM=1,所以OMN是等边三角形,所以ONM=60,即异面直线AB与CD所成的角为60,故选B.图D 8-2-15解法二如图D 8-2-15,设AC的中点为O,连接BO,OD,因为AD=CD,AB=BC,所以DOAC,OBAC.因为平面ABC平面ACD,且平面ABC平面ACD=AC,OD平面ACD,所以OD平面ABC.以O为坐标原点,OA,OB,OD的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系.设AC=2a,则D(0,0,a),A(a,0,0),B(0,a,0),C(-a,0,0),所以AB=(-a,a,0),

    14、DC=(-a,0,-a),所以cos=ABDC|AB|DC|=-a(-a)+0+02a2a=12,所以异面直线AB与CD所成的角为60,故选B.9.B对于选项A,当P,Q分别是线段AD1和B1C的中点时,ABPQ,故A正确;对于选项B,P在A处时,BPQ的面积为12,P在AD1的中点时,BPQ的面积为24,故BPQ的面积不是定值,故B错误;对于选项C,当点P不与点A重合时,假设直线PB1与AQ是共面直线,则AP与B1Q共面,与题意矛盾,所以直线PB1与AQ是异面直线,故C正确;对于选项D,BC垂直于PQ在平面ABCD内的射影,由三垂线定理得无论P,Q运动到什么位置,均有BCPQ,故D正确.故选

    15、B.10.355-1如图D 8-2-16,取B1C1的中点O,连接OM,OP,则MO平面A1B1C1D1,所以MOOP.因为PM=5,正方体ABCD-A1B1C1D1的棱长为2,N是D1C1的中点,所以A1N=5,OP=1,所以点P在以O为圆心,1为半径的位于平面A1B1C1D1内的半圆上,单独画出平面A1B1C1D1及相关点、线,如图D 8-2-17,所以点O到A1N的距离减去半径就是PQ长度的最小值.连接A1O,ON,作OHA1N交A1N于H,则SA1NO=22-1221-1211-1221=32,所以12A1NOH=32,解得OH=355,所以PQ长度的最小值为355-1.图D 8-2-16 图D 8-2-17

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022高三数学(理科)(全国版)一轮复习试题:第8章第2讲 空间点、线、面的位置关系 2 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-742686.html
    相关资源 更多
  • 专题31二次函数与圆压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx专题31二次函数与圆压轴问题-【压轴必刷】2023年中考数学压轴大题之经典模型培优案(原卷版).docx
  • 专题31不等式(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx专题31不等式(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛二试试题分专题训练.docx
  • 专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(解析版).docx
  • 专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx专题31三角形与新定义综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
  • 专题31 高考听力测试-2021年高考英语题型大冲关(上海专用).docx专题31 高考听力测试-2021年高考英语题型大冲关(上海专用).docx
  • 专题31 选择性必修三Unit1基础知识复习-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020).docx专题31 选择性必修三Unit1基础知识复习-2023年高考英语一轮复习基础知识 基本能力双清(译林版2020).docx
  • 专题31 运用构造法研究函数的性质(教师版).docx专题31 运用构造法研究函数的性质(教师版).docx
  • 专题31 运用构造法研究函数的性质(学生版).docx专题31 运用构造法研究函数的性质(学生版).docx
  • 专题31 生活故事-备战2022高考英语完形填空话题分类训练(高考真题 各地模拟题).docx专题31 生活故事-备战2022高考英语完形填空话题分类训练(高考真题 各地模拟题).docx
  • 专题31 抛物线及其性质(教师版).docx专题31 抛物线及其性质(教师版).docx
  • 专题31 抛物线及其性质(学生版).docx专题31 抛物线及其性质(学生版).docx
  • 专题31 抖音微信微博等短视频通讯媒体-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx专题31 抖音微信微博等短视频通讯媒体-备战2023年中考英语阅读理解热点话题分类训练(中考真题 名校最新模拟题).docx
  • 专题31 战后世界格局与当今世界的主题-【口袋书】中考历史与社会背诵手册(人教版新课程标准).docx专题31 战后世界格局与当今世界的主题-【口袋书】中考历史与社会背诵手册(人教版新课程标准).docx
  • 专题31 对数单身狗、指数找朋友-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx专题31 对数单身狗、指数找朋友-2022年高考数学优拔尖必刷压轴题(选择题、填空题)(新高考地区专用).docx
  • 专题31 对数单身狗 指数找朋友-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx专题31 对数单身狗 指数找朋友-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
  • 专题31 娱乐活动-备战2022高考英语阅读理解热点话题 体裁分类训练(高考模拟 名校真题).docx专题31 娱乐活动-备战2022高考英语阅读理解热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题31 圆中的重要模型之四点共圆模型(解析版).docx专题31 圆中的重要模型之四点共圆模型(解析版).docx
  • 专题31 圆中的重要模型之四点共圆模型(原卷版).docx专题31 圆中的重要模型之四点共圆模型(原卷版).docx
  • 专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(解析版).docx专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(解析版).docx
  • 专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(原卷版).docx专题31 四边形综合练习(基础)-冲刺2021年中考几何专项复习(原卷版).docx
  • 专题31 十字相乘法因式分解(解析版).docx专题31 十字相乘法因式分解(解析版).docx
  • 专题31 利用均值和方差的性质求解新的均值和方差(教师版).docx专题31 利用均值和方差的性质求解新的均值和方差(教师版).docx
  • 专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版) .docx专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(解析版) .docx
  • 专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx专题31 二次函数与四边形面积问题-2022年中考数学之二次函数重点题型专题(全国通用版)(原卷版).docx
  • 专题31 中考热点新定义问题专项训练(解析版).docx专题31 中考热点新定义问题专项训练(解析版).docx
  • 专题31 中考热点新定义问题专项训练(原卷版).docx专题31 中考热点新定义问题专项训练(原卷版).docx
  • 专题31 中国的外交(知识清单)-【口袋书】2024年高考政治一轮复习(新高考通用).docx专题31 中国的外交(知识清单)-【口袋书】2024年高考政治一轮复习(新高考通用).docx
  • 专题31 中国的外交 .docx专题31 中国的外交 .docx
  • 专题31 与圆有关的计算(解析版).docx专题31 与圆有关的计算(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1