分享
分享赚钱 收藏 举报 版权申诉 / 3

类型2022届新高考数学人教版一轮复习作业试题:解题思维5 高考中数列解答题的提分策略 2 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:676708
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:3
  • 大小:25.40KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届新高考数学人教版一轮复习作业试题:解题思维5高考中数列解答题的提分策略 WORD版含解析 2022 新高 学人 一轮 复习 作业 试题 解题 思维 高考 数列 解答 策略 WORD 解析
    资源描述:

    1、解题思维5高考中数列解答题的提分策略1.2020南昌市三模,12分已知数列an中,a1=2,anan+1=2pn+1(p为常数).(1)若-a1,12a2,a4成等差数列,求p的值;(2)若an为等比数列,求p的值及an的前n项和Sn.2.2021山东济南模拟,12分设等比数列an的前n项和为Sn,a1=1,S3=13.(1)求数列an的通项公式;(2)若an是递增数列,求数列|an-n-2|的前n项和.3.2021河南省名校第一次联考,12分已知数列an的首项a1=1,其前n项和为Sn,且满足Sn+1=2Sn+n+1.(1)求证:数列an+1是等比数列.(2)令bn=n(an+1),求数列b

    2、n的前n项和Tn.4.原创题,12分已知正项数列an的前n项和为Sn,a1=1,Sn2=an+12-Sn+1,其中为常数.(1)证明:Sn+1=2Sn+.(2)是否存在实数,使得数列an为等比数列?若存在,求出;若不存在,请说明理由.答 案解题思维5高考中数列解答题的提分策略1.(1)令n=1,则a1a2=2p+1,又a1=2,所以a2=2p.anan+1=2pn+1,an+1an+2=2pn+p+1,得an+2an=2p,故a4=2pa2=(2p)2.(3分)若-a1,12a2,a4成等差数列,则a4-2=a2,即(2p)2-2=2p,解得2p=2,即p=1.(6分)(2)若an为等比数列,

    3、则由a10,a20,知此数列的首项和公比均为正数.设其公比为q,因为an+2an=2p,所以q2=2p,q=2p2,故2p2=a2a1=2p2,得p=2.(9分)此时a1=2,q=2,所以an=2n,故anan+1=22n+1,故2pn+1=22n+1,因此p=2,所以数列an的前n项和Sn=2(1-2n)1-2=2n+1-2.(12分)2.(1)设等比数列an的公比为q.由题意得a1+a1q+a1q2=13,即1+q+q2=13,解得q=3或q=-4.故数列an的通项公式为an=3n-1,nN*或an=(-4)n-1,nN*.(4分)(2)由(1)知,an=3n-1,nN*.令bn=|an-n-2|=|3n-1-n-2|.(6分)由3n-1-n-20得3n-1n+2,所以n3.由3n-1-n-20,Sn+10,Sn+1-2Sn-=0,Sn+1=2Sn+.(5分)(2)Sn+1=2Sn+,Sn=2Sn-1+(n2),两式相减,得an+1=2an(n2).(8分)S2=2S1+,即a2+a1=2a1+,a2=1+,由a20,得-1.若an是等比数列,则a1a3=a22,(10分)即2(+1)=(+1)2,得=1.(11分)经检验,=1符合题意.故存在=1,使得数列an为等比数列.(12分)

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届新高考数学人教版一轮复习作业试题:解题思维5 高考中数列解答题的提分策略 2 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-676708.html
    相关资源 更多
  • 人教版九年级数学上册第二十四章圆章节测试试题(解析卷).docx人教版九年级数学上册第二十四章圆章节测试试题(解析卷).docx
  • 人教版九年级数学上册第二十四章圆章节测试试卷(附答案详解).docx人教版九年级数学上册第二十四章圆章节测试试卷(附答案详解).docx
  • 人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆必考点解析试题(含答案解析).docx人教版九年级数学上册第二十四章圆必考点解析试题(含答案解析).docx
  • 人教版九年级数学上册第二十四章圆必考点解析试卷(含答案详解).docx人教版九年级数学上册第二十四章圆必考点解析试卷(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆定向训练试卷(详解版).docx人教版九年级数学上册第二十四章圆定向训练试卷(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向训练练习题.docx人教版九年级数学上册第二十四章圆定向训练练习题.docx
  • 人教版九年级数学上册第二十四章圆定向练习试题(解析卷).docx人教版九年级数学上册第二十四章圆定向练习试题(解析卷).docx
  • 人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆定向练习试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试题(详解版).docx人教版九年级数学上册第二十四章圆定向测试试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试卷(详解版).docx人教版九年级数学上册第二十四章圆定向测试试卷(详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx人教版九年级数学上册第二十四章圆定向测试试卷(含答案详解版).docx
  • 人教版九年级数学上册第二十四章圆定向测评试题(含答案解析版).docx人教版九年级数学上册第二十四章圆定向测评试题(含答案解析版).docx
  • 人教版九年级数学上册第二十四章圆同步训练试题(详解版).docx人教版九年级数学上册第二十四章圆同步训练试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx人教版九年级数学上册第二十四章圆同步练习试题(含详解).docx
  • 人教版九年级数学上册第二十四章圆同步练习试卷(含答案详解).docx人教版九年级数学上册第二十四章圆同步练习试卷(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆同步练习练习题(详解).docx人教版九年级数学上册第二十四章圆同步练习练习题(详解).docx
  • 人教版九年级数学上册第二十四章圆单元测试试题(含详解).docx人教版九年级数学上册第二十四章圆单元测试试题(含详解).docx
  • 人教版九年级数学上册第二十四章圆单元测试试题(含详细解析).docx人教版九年级数学上册第二十四章圆单元测试试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆单元测试练习题(含答案详解).docx人教版九年级数学上册第二十四章圆单元测试练习题(含答案详解).docx
  • 人教版九年级数学上册第二十四章圆专题训练试卷(解析版含答案).docx人教版九年级数学上册第二十四章圆专题训练试卷(解析版含答案).docx
  • 人教版九年级数学上册第二十四章圆专题训练练习题(详解).docx人教版九年级数学上册第二十四章圆专题训练练习题(详解).docx
  • 人教版九年级数学上册第二十四章圆专题练习试题(详解).docx人教版九年级数学上册第二十四章圆专题练习试题(详解).docx
  • 人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆专题练习练习题(含答案解析).docx人教版九年级数学上册第二十四章圆专题练习练习题(含答案解析).docx
  • 人教版九年级数学上册第二十四章圆专题攻克试题(详解版).docx人教版九年级数学上册第二十四章圆专题攻克试题(详解版).docx
  • 人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx
  • 人教版九年级数学上册第二十四章圆专项训练试卷.docx人教版九年级数学上册第二十四章圆专项训练试卷.docx
  • 人教版九年级数学上册第二十四章圆专项练习试题(解析卷).docx人教版九年级数学上册第二十四章圆专项练习试题(解析卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1