2022年高考数学一轮复习 考点规范练52 变量间的相关关系、统计案例(含解析)新人教A版(文).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 考点规范练52 变量间的相关关系、统计案例含解析新人教A版文 2022 年高 数学 一轮 复习 考点 规范 52 变量 相关 关系 统计 案例 解析 新人
- 资源描述:
-
1、考点规范练52变量间的相关关系、统计案例基础巩固1.根据如下样本数据:x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y=bx+a,则()A.a0,b0B.a0,b0C.a0D.a0,b0答案:B解析:由表中数据画出散点图,如图,由散点图可知b0,故选B.2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()A.若K2的观测值为6.635,则在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系,因此在100个吸烟的人中必有99个患有肺病B.由独立性检验知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺病有关系时,我们说某人吸烟,则他有99%的可能患肺
2、病C.若在统计量中求出在犯错误的概率不超过0.05的前提下认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确答案:C解析:独立性检验只表明两个分类变量的相关程度,而不是事件是否发生的概率估计.3.两个随机变量x,y的取值如下表:x0134y2.24.34.86.7若x,y具有线性相关关系,且y=bx+2.6,则下列四个结论错误的是()A.x与y是正相关B.当x=6时,y的估计值为8.3C.x每增加一个单位,y大约增加0.95个单位D.样本点(3,4.8)的残差为0.56答案:D解析:由表格中的数据可知选项A正确;x=14(0+1+3+4)=2,y=14(2.2+
3、4.3+4.8+6.7)=4.5,4.5=2b+2.6,即b=0.95,y=0.95x+2.6.当x=6时,y=0.956+2.6=8.3,故选项B正确;由y=0.95x+2.6可知选项C正确;当x=3时,y=0.953+2.6=5.45,残差是5.45-4.8=0.65,故选项D错误.4.若两个分类变量X和Y的22列联表如下:XY合计y1y2x151520x2401050合计452570则在犯错误的概率不超过的前提下认为X与Y之间有关系.答案:0.001解析:K2的观测值k=70(510-4015)24525205018.82210.828,所以在犯错误的概率不超过0.001的前提下认为X与
4、Y之间有关系.5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法求得回归方程y=0.67x+54.9,现发现表中有一个数据看不清,请你推断出该数据的值为.零件数x/个1020304050加工时间y/min62758189答案:68解析:设表中看不清的数据为a,由题意,得x=30,y=307+a5,代入回归直线方程y=0.67x+54.9,得307+a5=0.6730+54.9,解得a=68.6.从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄yi(单位:千元)的数据资料,算得i=110xi=80,
5、i=110yi=20,i=110xiyi=184,i=110xi2=720.(1)求家庭的月储蓄y对月收入x的线性回归方程y=bx+a;(2)判断变量x与y之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.解:(1)由题意知n=10,x=110i=110xi=8010=8,y=110i=110yi=2010=2,又i=110xi2-10x2=720-1082=80,i=110xiyi-10xy=184-1082=24,由此得b=2480=0.3,a=y-bx=2-0.38=-0.4,故所求线性回归方程为y=0.3x-0.4.(2)由于变量y的值随x值的增加而增加
6、(b=0.30),因此x与y之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y=0.37-0.4=1.7(千元).7.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:顾客满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否在犯错误的概率不超过0.05的前提下认为男、女顾客对该商场服务的评价有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2k)0.0500.0100.001k3.8416.63510.828解:(1)由调查数据,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-717222.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
